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INTRODUCTION 

MANY PROBLEMS arise in engineering in which heat transfer 
is accompanied by melting and solidification (phase change). 
The situation is particularly common in materials processing, 
e.g. welding, casting, heat treatment, crystal growth, etc. The 
work described in this note has been motivated by appli- 
cation to TIG (tungsten inert gas) or GTA (gas tungsten arc) 
welding processes [l]. The situation is described schema- 
tically in Fig. 1. A source of heat (arc) moves laterally 
over the surface of a plate to be welded. Due to intense 
heating, the material under the arc melts and, as the arc 
moves away, the material resolidifies resulting in a welded 
joint. 

In this technical note a fixed grid numerical methodology 
is presented for solving phase change problems involving a 
moving heat source. The spirit of the paper is to emphasize 
only on the methodology and illustrate the procedure via 
a two-dimensional example; the solution for a complete 
three-dimensional TIG problem including the flow in the 
melt due to buoyancy, surface tension and electromagnetic 
forces, etc. is the subject of a separate paper [2] targeted for 
the material sciences community. 

Viewed in the laboratory coordinates, the arc problem 
described in Fig. 1 is inherently unsteady. However, if one 
works with a coordinate system fixed to the arc, then the 
problem becomes steady, assuming the plate length to be 
infinite in the direction of arc motion. This note deals with 
such a steady state problem only ; thus the arc and the melt 
under it are fixed in space while material enters and leaves 
the computational domain. 

THE PROPOSED PHASECHANGE 
METHODOLOGY 

There are two approaches to solving phase change prob- 
lems. The classical problem requires tracking of the phase 
change front by the satisfaction of the Stefan condition. 
This is often implemented computationally by deforming 
grid techniques, For steady state problems, this procedure 

would involve adjusting the grid ‘iteratively’ until the appro- 
priate interface conditions have been satisfied. 

Alternatively, the ‘weak’ or integral formulation of the 
Stefan problem leads to enthalpy methods which employ 
fixed grids. The technique proposed here falls into this second 
class. An important attribute of this method is its ease of 
implementation. The scheme has evolved from the recent 
work of Voller et al. [3,4] and the concurrent work of Voller 
and Prakash [5]. 

The basic idea is to represent the total enthalpy as a sum 
of sensible and latent heats, i.e. 

where 

h=c,T (2) 

cp being the specific heat and T the temperature. The latent 
heat, AH, is constrained by the limits 

O<AH$L (3) 

where L represents the total latent heat of fusion. Thus, 
at any point, the value of AH has the following physical 
interpretation : 

AH 
solid fraction = 1 - L. (5) 

The energy conservation equation for steady situation can 
be written as 

V.(puH) = V* 

where p represents the density, u the material velocity and k 
and cp are the thermal conductivity and specific heat of the 
material, respectively. Substituting equation (1) into equa- 
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FIG. 1. Schematics of a TIG/GTA welding process. 

tion (6) it follows : 

V*(puh) = s+v* 
( > 

;Vh (7) 

where 

S = -V*(puAH). (8) 

Thus, the equation for the sensible enthalpy is the same as 
that for the no-phase change case, except for the source term 
S which accounts for the efflux of latent heat. 

The discretization of the sensible enthalpy equation may 
now proceed in any manner as long as proper representation 
is made of the source term S. A popular methodology, which 
is quite widely used, is the control-volume finite-difference 
approach described by Patankar [6] and implemented in 
such general purpose codes as PHOENICS [7]. In such an 
appro,ach, the discretization equations are obtained by 
applymg conservation laws over finite size control volumes 

surrounding the grid nodes. Thus, for a typical two-dimen- 
sional control volume surrounding a node P (Fig. 2) what 
concerns us is the integral 

3, = Sdv= - c { pu - rIAH} d.r (9) 

which appears as a source term in the discretization equation 
for h at node P. This integral may be represented as 

sr = @&AY(AH), + (~vMxW4, 

- (PWYGW, - (P~).WAW, (10) 

where the subscripts w, e, n, s, etc. refer to the west, east, 
north and south faces of the control volume in Fig. 2. The 
interface values of (AH) can be related to the nodal value of 
AH by using the upwind methodology [6], thus 
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FIG. 2. Control volume around a grid node P. 
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FIG. 3. Phase change processes : (a) general case ; (b) isothermal phase change ; (c) linear phase change. 

(AH), = (AH)w if u, > 0 
(11) 

= (AH), if u,<O 

and likewise for (AH),, (AH),, (AH),, etc. 
Given a AH field, the equation for h can now be solved. 

To complete the computational cycle, the next task is to 
relate AH and h through the constitutive equation for the 
phase change process. As shown in Fig. 3, the general 
relationship between AH and h may be represented by 

AH=f(h) 

where 

f(h) = 0 

G 

for hic,T, 

0 <f(h) <L for c,T, <h < cPT (12) 

(h) = L for h > q,T,. 

Here T, and T, designate the solidus and the liquidus tem- 
peratures, respectively. Two special cases of the function / 
are also shown in Fig. 3 corresponding to an isothermal 
phase change and a linear phase change. Equation (12) may 
be appropriately inverted to read 

h =f-‘(AH). (13) 

The iterative solution for h and AH proceeds as follows : 

(1) Let AHk represent the AH field as it exists at the 
beginning of the kth iteration. 

(2) Using AHk to compute the source term S, solve equa- 
tion (7) to obtain the sensible enthalpy h’. 

(3) Finally obtain AH*+‘, the AH field for the next 
iteration, using 

AHk+’ = AHk+hk-f-‘(AHk) 

with the imposed constraint 

O<AHk+‘<L. 

(14) 

Once the iterative solution converges, equation (14) assures 
the satisfaction of the phase change relation (13). 

The form of equation (14) for the two most common cases 
will now be presented. 

Isothermal phase change (pure materials) 
Isothermal phase change corresponds to phase change at 

a distinct temperature. Thus 

T, = T = TPc (15) 

where TPC defines the phase change temperature. 
In the interval 0 < AH < L, h is a single valued function. 

Thus, from equation (13), h = f-‘(AH) = c,T,. Equation 
(14) then becomes 

AHk+’ = AHk+hk-cpTpc 

AHk+ ’ = max [0, AH’+‘] 

AHk+’ = min [L,AH’+‘] 

(16) 

where max [a,b] means the greater of a and b min [a, b] 
means the smaller of a and b. The max, min statements are 
to enforce the constraint 0 < AHk+ ’ < L. 
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Linear phase change (alloys) 
Linear phase change corresponds to the evolution of latent 

heat, AH, as a linear function of the temperature. Define 

phase change temperature, 

TW = #-,+T) 
(17) 

and 

phase change interval, 
E = i(T, - T,). 

The function f, equation (12) for the linear phase change 
case would read 

Aff=f(h)=; l+;(h-C&J 
[ P 1 f-or cpTs <h < c,T, 

(19) 

AH =f(h) = 0 for h < cPTS 

AH=f(ls) = L for h > cPT,. 

Hence the equation for iteratively updating AH would be 

AH”+’ = AHkfhx-?(2AH’-L)--c,T, (20) 

AHk +’ = max [O,AHk+‘] 

AH*+ ’ = min [L, AHk+ ‘I. 

Note that the linear case reduces to the isothermal when 
E = 0. Hence, though the two cases have been presented 
separately for ease of understanding, the general linear case 
includes the isothermal phase change case. 

CALCU~TlON OF THE FLOW FIELD 

Phase change problems typically involve three distinct 
regions with regard to the flow field. These are : (i) the liquid 
region (T > T,), (ii) the solid region (T < T,), and (iii) the 
mushy zone (T, $ T C T,) which exists between the liquid 
and the solid. A commonly used procedure for solving for 
the flow tield is to prescribe a fluid viscosity which is equal 
to the liquid viscosity in the liquid region and which increases 
gradually over the mushy zone to a large value in the solid. 
This representation can be used quite conveniently because 
finite-difference procedures are in place [6,8] which can prop- 
erly handle large discontinuities in the diffusion coefficients. 
The central idea is to use the harmonic averaging of the nodal 
values of the diffusion coefficients (like viscosity) to compute 
the d~usional fluxes (like shear forces) at the faces of the 
control volume. 

Another procedure for modeling the flow in the mushy 
region is to provide suitable sink terms in the momentum 
equations [3,4]. Such a Darcy type flow representation, with 
the Carman-Koseny equation for the porosity [9], has 
recently been used by Voller and Prakash [S]. 

Since the focus of the present study is on the development 
of the numerical methodolo~ far phase change, questions 

related to the modeling of the mushy region are not empha- 
sized here ; the proposed method can be used along with any 
repre~ntation of the mushy region. 

APPLICATION OF THE PROCEDURE 
TO AN EXAMPLE PROBLEM 

The proposed methodology has been applied to a two- 
dimensional example problem shown schematically in Fig. 
4. The set of boundary conditions is also shown in Fig. 4. 
The heat source is at rest while material enters and leaves the 
computational domain. Only the buoyancy force has been 
considered in the melt, and the usual Boussinesq approxi- 
mation is made. Phase change is assumed to occur linearly 
over a temperature range. The fluid viscosity is assumed to 
be equal to the liquid viscosity for T z TPc while it is taken 
to be a large value for T < Tpc. The standard Navier-Stokes 
equations apply for the flow in the melt. These equations 
were solved using the control-volume finite-difference 
approach of Patankar ]6] with harmonic averaging of 
diffusion coefficient practice [8]. The velocity pressure coup- 
ling is handled using variants of the SIMPLE algorithm [6]. 
The example case corresponds to the following values of the 
dimensionless variables : 

4 = 0.2 

Re=p+10 

pr _I Lcp = 0.01 
k 

(& __ g/3 (TF - Td t3 = 106 
V2 

Q=: ’ 

~cpum(Tp, - T,,) 
= 20. 

A 40 x 20 grid was used in the x-y plane. The grid was fine 
under the heat source and gradually expanded in the x- 
direction ; the domain extended from x/r = - 7.9 to 7.9. In 
the y-direction, the grid was uniform. The solution took 
about 40 iterations for the variables to converge up to four 
significant digits. Each of these iterations involved a cycle of 
the SIMPLE algorithm and the updating of the h and AH 
fields. No underrelaxation was found necessary for h or AH 
which reflects good stability of the proposed method. 

Results of calculations are presented in Fig. 5. Attention is 
focused on a magnified portion of the computational domain 
under the source. The vectors represent the direction and 
magnitude of the velocity (normalized by ui3 while the con- 

TI=Tin r?“““-_r I ’ i=Ti” 

/ I I / 

L x = -a X.=a 

” = “i” - - 3T/ax=O 
v=o au/aY=o;v=o c t 
T-Tin __* 

Y 
t 

:: v=o 

x _* ” =“i” 

T = Tin; \I = 0; aday = 0 

FIG. 4. Schematics and boundary conditions for the example problem. 
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FIG. 5. Results for the example problem. Arrows correspond to the velocity vectors (u/ui.) and contours 
are isotherms of 0 = (T- T,)/(T,,- T,,). 

tours are isotherms of (T-T,)/(T,-T,,,). Thus the con- 
tours marked 0.1 and -0.1 correspond to the liquidus and 
solidus lines, respectively. As expected, buoyancy gives rise 
to an upward flow under the heat source and downward flow 
away from it. 

CONCLUDING REMARKS 

A numerical method is presented for the solution of phase 
change problems involving a moving heat source. The pro- 
cedure works on a fixed grid and does not require the 
implementation of the Stefan condition at the solid-liquid 
interface. Hence, the procedure is easy to implement on fixed 
grid codes like PHOENICS. To illustrate the procedure, a 
two-dimensional problem involving natural convection flow 
in the melt is analyzed. 
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